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Abstract. We study the following generalization of the inradius: For
a convex body K in the d-dimensional Euclidean space and a linear
k-plane L we define the inradius of K with respect to L by rL(K) =
max{r(K; x + L) : x ∈ Ed}, where r(K; x + L) denotes the ordinary
inradius of K ∩ (x + L) with respect to the affine plane x + L. We show
how to determine rL(P ) for polytopes and use the result to estimate
min{rL(T d

r ) : L is a k-plane} for the regular d-simplex T d
r . These esti-

mates are optimal for all k in infinitely many dimensions and for certain
k in the remaining dimensions.

1. Introduction

We denote by Ed the d-dimensional Euclidean space equipped with the
norm || · || and inner product 〈·, ·〉. The space of all compact convex bodies
is denoted by Kd and Bd ∈ Kd denotes the d-dimensional unit ball. By
Ld

k we denote the space of all k–dimensional linear subspaces of Ed and for
L ∈ Ld

k, M ⊂ Ed we write M |L for the orthogonal projection of M onto L.
The orthogonal complement of L ∈ Ld

k is denoted by L⊥.
The inradius r(K), the circumradius R(K), the diameter D(K) and the

minimal width ∆(K) are classical fundamental functionals of a convex body
K ∈ Kd. For a detailed description we refer to [BF34]. More information on
the body can be obtained if we link each pair of the functionals by a series
of d − 2 intermediate functionals. It turns out that these functionals allow
generalizations and analogues of many classical results. A first systematic
study of these series can be found in [Hen91] and for recent work see e.g.
[Bal92], [Hen92], [BH92], [BH93].

Some of these intermediate functionals are well known functionals in ap-
proximation theory, called Bernstein and Kolmogorov diameters, (cf. e.g.
[Pin85], [Puk79]) and they are also of interest for computational aspects of
convex bodies (cf. e.g. [GK93], [GHK90], [BH93]).

Here we study a series linking the inradius and minimal width. There
are two natural series of this kind. For the definition we need some more
notation: For a k-dimensional plane L and a set M ⊂ Ed we write r(M ;L)
for the inradius of M with respect to the space L, i.e., r(M ;L) is the radius
of the largest k-dimensional ball contained in M ∩ L. A ball with radius
r(M ;L) contained in M ∩ L is called an inball. For x ∈ Ed the translate
{l + x : l ∈ L} is denoted by L(x).
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Definition 1. For K ∈ Kd and 1 ≤ k ≤ d let

rπ
k (K) = min

L∈Ld
k

r(K|L;L) and rσ
k (K) = min

L∈Ld
k

max
x∈Ed

r(K;L(x)).

Obviously, we have

r(K) = rπ
d (K) ≤ rπ

d−1(K) ≤ · · · ≤ rπ
1 (K) = ∆(K)/2,

r(K) = rσ
d (K) ≤ rσ

d−1(K) ≤ · · · ≤ rσ
1 (K) = ∆(K)/2.

Furthermore, we have rπ
k (K) ≥ rσ

k (K) and there exist convex bodies K ∈ Kd,
d ≥ 3, with rπ

k (K) > rσ
k (K) [Tsi96].

For a d-simplex T d ∈ Kd an explicit formula for rπ
k (T d) was given in

[BH93]. Apparently the situation for the rσ
k (K) is much more complicated,

as we have a twofold optimization. Here we give formulae for the inner
optimization and then we use these formulae to compute the rσ

k (T d
r ) for the

regular d-simplex T d
r .

For the analogous series rk
σ(K) = maxL∈Ld

k
maxx∈Ed r(K;L(x)) this was

done by K. Ball (cf. [Bal92]). There it turned out that the rk
σ(T d

r ) are
the ordinary inradii of k–dimensional faces. Unfortunately, the problem to
characterize the optimal planes for rσ

k (T d
r ) is much more intractable. In

particular, we will see that the value of rσ
k (T d

r ) depends on the parity of the
dimension.

Based on a formula for rσ
k (T d) for arbitrary simplices T d we will give

estimates for rσ
k (T d

r ) which are optimal for infinitely many dimensions and
for certain k in the remaining dimensions but do not hold in general. The
first case that the estimate is not tight occurs for d even and k = 1 or
k = d− 1. However, in this instance we have again an exact formula.

In more detail our results are as follows: For L ∈ Ld
k and K ∈ Kd let

(1) rLk
(K) = max

x∈Ed
r(K;Lk(x)).

For polytopes we have

Theorem 1. Let P ⊂ Ed be a d-polytope and Lk ∈ Ld
k. Then rLk

(P ) is
attained for a plane Lk(x) such that an inball of P ∩ Lk(x) touches at least
d + 1 facets of P .

By Theorem 1 the computation of rσ
k (P ) is reduced to the computation

of rσ
k (T d) for finitely many simplices T d ⊂ P . For a d-simplex T d Theorem

1 yields an effective formula: Let u0, . . . , ud+1 be the outer normal vectors
of the facets of T d such that ||ui|| is equal to the area of the corresponding
facet. u0, . . . , ud are called the facets vectors of T d. With this notation we
have

Theorem 2. Let T d ⊂ Ed be a d-simplex with facets vectors u0, . . . , ud and
Lk ∈ Ld

k. Then

rLk
(T d) = r(T d) ·

∑d
i=0 ||ui||∑d

i=0 ||ui|Lk||
.

To state our last Theorem about the inradii of a regular simplex we need
Hadamard numbers:
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Definition 2. A p × p–matrix H = (hij) is called a Hadamard matrix if
hij = ±1 for all i, j and HHT = pIp where HT denotes the transpose of H
and Ip denotes the unit matrix. A number p, for which a Hadamard matrix
exists, is called a Hadamard number.

It is well known that p = 2m is a Hadamard number for all m ∈ N and
it is conjectured that p = 4m is a Hadamard number for all m ∈ N. The
conjecture has been verified for m ≤ 106 and in many other cases as well
(cf. [Miy91]).

Theorem 3. For a regular d-simplex T d
r with r(T d

r ) = 1 one has

rσ
k (T d

r ) ≥
√

d

k
for k = 1, . . . , d.

Equality holds (at least) in the following cases:
(1) for k = m if m + 1 divides d + 1,
(2) for all k if d + 1 is a Hadamard number,
(3) for k = 2 and for d odd, k = 3.

If equality holds for the pair (k, d) then we also have equality in the cases
(d− k, d), (k, n(d + 1)− 1), (nk, n(d + 1)− 1), n ∈ N.
For d even it holds

rσ
1 (T d

r ) =
d + 1√
d + 2

, rσ
d−1(T

d
r ) =

2
√

d + 1√
d + 2 +

√
d− 2

.

It is certainly of interest to compare rπ
k (T d

r ) and rσ
k (T d

r ). This shows a
strange behaviour of these numbers. If we take the dimension d such that
d+1 is a Hadamard number we see (cf. (10)) that rπ

k (T d
r ) and rσ

k (T d
r ) coincide

if and only if k + 1 divides d + 1. We observe that our result implies many
examples for rπ

k (K) 6= rσ
k (K) and the relation of rπ

k (T d
r ) and rσ

k (T d
r ) depends

rather on the number-theoretical properties of k and d than on their sizes.
In section 2 we prove Theorem 1 and Theorem 2 and in section 3 we study

rσ
k (T d

r ). In order to simplify the proof of Theorem 3 we split it in several
lemmas. In the last section we point out a relation between the inradii of
arbitrary convex bodies and simplices.

Finally, we remark that the problem to determine rσ
k (K) may be consid-

ered as a special case of the more general problem to obtain information
about a convex body via inscribed “largest” convex bodies. For questions
of this type we refer to [GKL95] and [HKL95].

2. Optimal planes and Inradii of simplices

We start with the proof of the characterization of the planes for which
rLk

(P ) is attained (cf. (1)).
Proof of Theorem 1. Let w1, . . . , wm be the outward unit normal vectors of
the facets F 1, . . . , Fm of the polytope P and let b1, . . . , bm ∈ R such that

P = {x ∈ Ed : 〈wi, x〉 ≤ bi, 1 ≤ i ≤ m}.

Moreover, let v1, . . . , vd be an orthonormal basis of Ed such that Lk is gen-
erated by v1, . . . , vk. For abbreviation we write ŵi instead of wi|Lk. Now,
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for x ∈ Ed and a positive number r we consider the functions

fi(x, r) = 〈wi, x〉+ r||ŵi||, 1 ≤ i ≤ m.

First, we prove the following relation

(2) fi(x, r) ≤ bi, 1 ≤ i ≤ m, ⇔ x + r(Bd ∩ Lk) ⊂ P ∩ Lk(x).

In order to show “⇐” we may assume ŵi 6= 0. In this case we have x +
rŵi/||ŵi|| ∈ P and hence

(3) fi(x, r) = 〈wi, x + rŵi/||ŵi||〉 ≤ bi.

For the reverse direction we note that x ∈ P ∩ Lk(x) and P ∩ Lk(x) is a
nonempty polytope. W.l.o.g. let F 1, . . . , Fn be the facets of P such that
F i ∩ Lk(x), 1 ≤ i ≤ n, are the facets of the polytope P ∩ Lk(x). Then we
have ŵi 6= 0 and the outward unit normal vector of the facet F i ∩ Lk(x)
with respect to P ∩ Lk(x) is given by ŵi/||ŵi||. Hence it suffices to show
x + rŵi/||ŵi|| ∈ P , 1 ≤ i ≤ n, what is equivalent to fi(x, r) ≤ bi, 1 ≤ i ≤ n,
and (2) is proved.

Now, suppose fi(x, r) ≤ bi, 1 ≤ i ≤ m. By our last argument we have
further

(4) fi(x, r) = bi ⇔
(
x + r(Bd ∩ Lk)

)
∩ F i 6= ∅.

In order to prove the theorem we choose an x ∈ Ed such that the inball x+
rLk

(P )(Bd∩Lk) ⊂ P touches a maximal number of facets of P . W.l.o.g. let
F 1, . . . , F l be these facets. By (2), (4) we have

fi(x, rLk
(P )) = bi, 1 ≤ i ≤ l, and fi(x, rLk

(P )) < bi, l + 1 ≤ i ≤ m.

Now, we assume l < d + 1 and distinguish two cases.
i) The vectors w1, . . . , wl are linearly independent. Then we can find a
z ∈ Ed with 〈wi, z〉 < 0, 1 ≤ i ≤ l. Hence for sufficiently small ε > 0 we
get fi(x + εz, rLk

(P )) < bi, 1 ≤ i ≤ m, which contradicts the definition of
rLk(P ) (cf. (2)).
ii) The vectors w1, . . . , wl are linearly dependent. Then there exists a z ∈
Ed\{0} with 〈wi, z〉 = 0, 1 ≤ i ≤ l. So we have fi(x + εz, rLk

(P )) = bi,
1 ≤ i ≤ l, for ε ∈ R. However, since P is bounded there exists a ε > 0
such that fi(x + εz, rLk

(P )) ≤ bi, 1 ≤ i ≤ m, but at least l + 1 inequalities
are satisfied. This contradicts the choice of the point x and the proof is
completed. �

Applied to a d-dimensional simplex T d the last theorem says that all
facets are touched by an optimal k-dimensional inball and, in particular,
this inball is uniquely determined. This property is the key tool for the
proof of Theorem 2.
Proof of Theorem 2. W.l.o.g. let r(T d) = 1 and let T d be given by

T d = {x ∈ Ed : 〈ui/||ui||, x〉 ≤ 1}.

Let v1, . . . , vd be an orthonormal basis of Ed such that Lk is generated by
v1, . . . , vk. Furthermore, let x ∈ Ed such that rLk

(T d) = r(T d;Lk(x)) and x
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is the center of the inball of T d∩Lk(x). By Theorem 1 x+rLk
(T d)(Bd∩Lk)

touches all facets of T d and we have (cf. (4))

〈ui, x〉+ rLk
(T d)||ui|Lk|| = ||ui||.

Summing up gives

〈
d∑

i=0

ui, x〉+ rLk
(T d)

d∑
i=0

||ui|Lk|| =
d∑

i=0

||ui||.

Now, it is well known that
∑d

i=0 ui = 0 (cf. [BF34]) and thus we obtain the
formula. �

So, by Theorem 2 the problem to determine rσ
k (T d) for a d-simplex T d is

reduced to the determination of

(5) min

{ ∑d
i=0 ||ui||∑d

i=0 ||ui|Lk||
: Lk ∈ Ld

k

}
.

In other words, we have to find a k-dimensional plane Lk such that the sum∑d
i=0 ||ui|Lk|| becomes maximal. For regular simplices and certain cases of

k and d we can explicitly compute the exact maximum.

3. Regular simplices

Let T d
r be a regular d-simplex with r(T d

r ) = 1 and let 0 be the center of
the d-dimensional inball. Hence,

T d
r = {x ∈ Ed : 〈wi, x〉 ≤ 1, 1 ≤ i ≤ d},

where wi are the outward unit normal vectors of the facets of T d
r . In this

case Theorem 2 gives

(6) rσ
k (T d

r ) =
d + 1

max{
∑d

i=0 ||wi|Lk|| : Lk ∈ Ld
k}

.

Lemma 1.

(7) rσ
k (T d

r ) ≥
√

d/k

and equality holds if and only if there exists a Lk ∈ Ld
k such that

||w0|Lk|| = ||w1|Lk|| = · · · = ||wd|Lk|| =
√

k/d.

Proof. For the proof we use the fact that for v ∈ Ed, ||v|| = 1, it holds
(cf. [Bal92], [Tsi96])

(8)
d∑

i=0

〈wi, v〉2 =
d + 1

d
.

Let Lk ∈ Ld
k be an arbitrary k-plane and let v1, . . . , vd be an orthonormal

basis of Ed such that Lk is spanned by v1, . . . , vk. Then we have ||wi|Lk||2 =∑k
j=1〈wi, vj〉2 and by (8)

d∑
i=0

||wi|Lk||2 =
k∑

j=1

d∑
i=0

〈wi, vj〉2 = k · d + 1
d

.
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Application of the Cauchy-Schwarz inequality yields

(9) (
d∑

i=0

||wi|Lk||)2 ≤ (d + 1)
d∑

i=0

||wi|Lk||2 = k · (d + 1)2

d
.

Together with (6) this shows (7). Furthermore, (9) is satisfied with equality
if and only if all wi|Lk have the same length. �

In order to bound rσ
k (T d

r ) from above we use the explicit formula for
rπ
k (T d

r ) given in [BH93] (Lemma 3.2)

rσ
k (T d

r ) ≤ rπ
k (T d

r )

=

(
m ·

√
dle(d + 1− dle)

(d + 1)2d
+ (k + 1−m) ·

√
blc(d + 1− blc)

(d + 1)2d

)−1

,
(10)

where l = (d + 1)/(k + 1), d + 1 ≡ m (mod k + 1), m ∈ {0, . . . , k}, and dxe
(bxc) denotes the smallest (largest) integer ≥ (≤) x. Since l ≤ (d + 1)/2 we
obtain

rσ
k (T d

r ) ≤

(
(k + 1) ·

√
blc(d + 1− blc)

(d + 1)2d

)−1

and writing blc = (d + 1)/(k + 1)− µ(d + 1)/(k + 1) gives

rσ
k (T d

r ) ≤
√

d

k
·

√
k

(1− µ)(k + µ)
.

Thus, by Lemma 1 we have

Lemma 2.

rσ
k (T d

r ) =

√
d

k
if k + 1 divides d + 1.

Moreover, since the parameter µ is bounded from above by min{k, d −
k}/(d + 1) it is not hard to see that

rσ
k (T d

r ) ≤
√

d

k
·
√

2
d + 1
d + 2

.

In general we can not expect to find a k-plane such that all the projections
of wi onto that plane have equal lengths as required by Lemma 1. However,
for certain constellations of k and d we can construct such planes. To this end
we use the following approach: Let Lk be a k-plane given by an orthogonal
basis v1, . . . , vk, ||vi|| = 1. Each vi can be uniquely represented as

vi =
d∑

j=0

xi
jw

j with
d∑

j=0

xi
j = 0, 1 ≤ i ≤ k.
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Using the identity 〈wm, wn〉 = −1/d, m 6= n, we obtain for the coordinates
xi

j the relations

||vi|| = 1 ⇔
d∑

j=0

(xi
j)

2 = d/(d + 1), 1 ≤ i ≤ k,

〈vm, vn〉 = 0 ⇔
d∑

j=0

xm
j xn

j = 0, m 6= n.

Furthermore, we find for the length of the projection wj |Lk

||wj |Lk|| = ||
k∑

i=1

〈wj , vi〉vi|| = d + 1
d

√√√√ k∑
i=1

(xi
j)2.

In view of Lemma 1 we get with a suitable normalization

Lemma 3. rσ
k (T d

r ) =
√

d/k iff there exist x1, . . . , xk ∈ Rd+1 with

i) ||xi|| = 1, 1 ≤ i ≤ k, ii) 〈xm, xn〉 = 0, 1 ≤ m < n ≤ k,

iii)
d+1∑
j=1

xi
j = 0, 1 ≤ i ≤ k, iv)

k∑
i=1

(xi
j)

2 =
k

d + 1
, 1 ≤ j ≤ d + 1.

(11)

An immediate consequence is

Lemma 4. If d + 1 is a Hadamard number then one has equality in (7) for
all k = 1, . . . , d.

Proof. Since d + 1 is a Hadamard number there exist pairwise orthogonal
vectors y0, y1, . . . , yd ∈ Rd+1 with coordinates yi

j ∈ {−1, 1}. W.l.o.g. let
y0 = (1, 1, . . . , 1)T . Then we have

∑d+1
j=1 yi

j = 0, 1 ≤ i ≤ d, and each subset
of the vectors xi = (d + 1)−1/2yi, 1 ≤ i ≤ d, satisfies (11). �

The vectors xi constructed in the previous proof are of a special type,
because all coordinates have the same absolute value. Obviously, for odd
numbers there do not exist even two vectors of this type satisfying (11).
However, as the next lemma shows, in all dimensions we can find two vectors
satisfying the conditions of (11).

Lemma 5. Equality holds in (7) for k = 2 and for d odd, k = 3.

Proof. First, we study the case k = 2. For j = 1, . . . , d + 1 let

αj =
2πj

d + 1
, x1

j =

√
2

d + 1
cos αj , x2

j =

√
2

d + 1
sinαj .

In the following we verify the properties i)–iv) of (11) for the vectors x1, x2.
Obviously, (x1

j )
2 +(x2

j )
2 = 2/(d+1), which shows iv). Since cos αj + i sinαj

are the complex roots of the equation xd+1 − 1 = 0 we also have iii), i.e.,
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j=1 x1

j =
∑d+1

j=1 x2
j = 0. Moreover,

d+1∑
j=1

x1
jx

2
j =

1
d + 1

d+1∑
j=1

2 cos αj sinαj =
1

d + 1

d+1∑
j=1

sin 2αj ,

d+1∑
j=1

(x1
j )

2 =
2

d + 1

d+1∑
j=1

cos2 αj =
1

d + 1

d+1∑
j=1

(1 + cos 2αj)

= 1 +
1

d + 1

d+1∑
j=1

cos 2αj ,

d+1∑
j=1

(x2
j )

2 = . . . = 1 +
1

d + 1

d+1∑
j=1

sin 2αj .

It remains to show
∑d+1

j=1 sin 2αj =
∑d+1

j=1 cos 2αj = 0. Now, if d + 1 is
odd then the numbers cos 2αj + i sin 2αj , 1 ≤ j ≤ d + 1, are the roots
of xd+1 − 1 = 0, otherwise cos 2αj + i sin 2αj , 1 ≤ j ≤ (d + 1)/2, and
cos 2αj + i sin 2αj , (d + 1)/2 < j ≤ d + 1 are the roots of x(d+1)/2 − 1 = 0.

For d odd and k = 3 we choose the coordinates

x1
j =

√
2

d + 1
cos 2αj , x2

j =

√
2

d + 1
sin 2αj , 1 ≤ j ≤ d + 1,

x3
j =

{
1/
√

d + 1, j = 1, . . . , d+1
2 ,

−1/
√

d + 1, j = d+3
2 , . . . , d + 1.

This case can be treated completely similar to the case k = 2. �

The next lemma shows that equality in (7) for some (k, d) implies equality
for certain other values of k and d.

Lemma 6. If equality holds in (7) for the pair (k, d) then we also have
equality for in the cases (d − k, d), (k, n(d + 1) − 1), (nk, n(d + 1) − 1),
n ∈ N.

Proof. Suppose, we have equality for (k, d). By Lemma 1 there exists a
k-plane Lk such that ||wi|Lk|| =

√
k/d, 0 ≤ i ≤ d. Obviously, for the

orthogonal complement L⊥k ∈ Ld
d−k of Lk we have ||wi|L⊥k ||2 = 1−||wi|Lk||2

and hence by Lemma 1 we also have equality for (d− k, d).
Now, let x1, . . . , xk ∈ Rd+1 be vectors satisfying the conditions (11). For

an integer n let yi = (xi, xi, . . . , xi) ∈ Rn(d+1) be the vector consisting of
n copies of xi. With x̂i = n−1/2yi we obtain k vectors satisfying (11) with
respect to the dimension n(d+1)−1. In order to show equality for the pairs
(nk, n(d + 1)− 1), n ∈ N, let yi,m ∈ Rn(d+1), 1 ≤ i ≤ k, 1 ≤ m ≤ n, be the
vectors with coordinates

yi,m
j =

{
xi

j−(m−1)(d+1), j ∈ {(m− 1)(d + 1) + 1, . . . ,m(d + 1)}
0, otherwise.

�
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Now, we are ready for the proof of Theorem 3.
Proof of Theorem 3. By the previous lemmas it remains to study the case
d even and k = 1, d − 1. Since rσ

1 (T d
r ) is one half of the minimal width of

the regular simplex we may deduce the value of rσ
1 (T d

r ) from the Theorem
of Steinhagen (cf. [Ste22], [BH93])

(12) r(K) ≥ ∆(K)
2

{√
d + 2/(d + 1), d even,

1/
√

d, d odd,
, K ∈ Kd,

where, for example, equality holds for a regular simplex. Unfortunately, for
k = d− 1 the proof is rather lengthy and tedious, and thus we omit it here
and we refer to [Tsi96]. �

4. Concluding Remarks

By Theorem 3 we know the exact values of rσ
k (T d

r ) for d ≤ 5 and the first
unknown value is rσ

3 (T 6
r ). Moreover, since we have equality for k = 2 in all

dimensions Theorem 3 shows that we also have equality for k = 4 in all odd
dimensions.

Next we want to show a relation between the inradii of an arbitrary convex
body and the inradii of simplices. To this end we define

σ(k, d) = inf{r(T )/rσ
k (T ) : T is a d-simplex}.

Theorem 3 implies the upper bound σ(k, d) ≤
√

k/d and we conjecture that
σ(k, d) is attained for the regular simplex, i.e.,

Conjecture 1. For 1 ≤ k ≤ d it holds

σ(k, d) = r(T d
r )/rσ

k (T d
r ).

This conjecture is not only of interest in its own, but it would also lead
to a generalization of the Theorem of Steinhagen (12) as the next lemma
shows.

Lemma 7. Let K ∈ Kd be a convex body with nonempty interior. It holds

r(K)/rσ
k (K) ≥ σ(k, d).

Proof. It is well known that there exists a m-dimensional plane Lm and a m-
simplex Tm ⊂ Lm with K ∩ Lm ⊂ Tm, r(K) = r(Tm;Lm) and the cylinder
P = Tm + L⊥m contains K (cf. [BF34]).

Now, let T d
j ⊂ P , j ∈ N, be a sequence of d-simplices such that K ⊂

T d
j + εjB

d for some εj ≥ 0 with limj→∞ εj = 0. By construction we have
r(T d

j ) ≤ r(Tm;Lm) = r(K) and rσ
k (K) ≤ µjr

σ
k (T d

j ) for some µj ≥ 1 with
limj→∞ µj = 1. Altogether we get

r(K)
rσ
k (K)

≥ lim inf
j→∞

1
µj

r(T d
j )

rσ
k (T d

j )
≥ σ(k, d).

�
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Germany


